e

55-£3

1 J’j

)9¢477

Prediction and Causal Reasoning in Planning) “/
T. Dean and M. Boddy 72.())/ |
Brown University /
Providence, RI 02912 ﬁ

Abstract

A
Nonlinear planners {e-gNexi={#6}) are often touted as having/an efficiency advantage over linear
planners, [e-g77STRI The reason usually given is that nonlinear planners, unlike their linear coun-

terparts, are not forced to make arbitrary csmmitments to the orderin which actions are to be performed.
This ability to delay commitment enables nonlinear planners to solye certain problems with far less effort
than would be required of linear planners. Inthis-papes,ua-aegue'that this advantage is bought with a
significant reduction in the ability of a nonlinear planner to accurately predict the consequences of actions.
Unfortunately, the general problem of predicting the consequences of a partially ordered set of actions is
intractable. In gaining the predictive power of linear planners, nonlinear planners sacrifice their efficiency
advantage. There are, however, other advantages to nonlinear planning (e.g., the ability to reason about
partial orders and incomplete information) that make it well worth the effort needed to extend nonlin-
ear methods. In_this paper —we supply }’fra.mework for causal inference that supports reasoning about
partially ordered events and actions whose effects deend upon the context in which they are executed.
As an alternative to a complete but potentially expongntial-time algorithm, rovide a provably sound
polynomial-time algorithm for predicting the conseqyences of partially ordered evepts. If the events turn
out to be\ totally ordered, then the algorithm is com‘)lete as well as sound.

Keywerds:—causal reascning;-planning;prediction, no\!{onotonic inference, data b
N e e
PN // // /é c/

management.

1 Introduction

In this paper, we are concerned with the process of incrementally constructing nonlinear plans (i.e., plans
represented as sets of actions whose order is only partially specified). Nonlinear planning (2] has long been
considered to have distinct advantages over linear planning systems such as STRIPS (8] and its descendents.
One supposed advantage [10] has to do with the idea that, by delaying commitment to the order in which
independent actions are to be performed, a planner can avoid unnecessary backtracking. Linear planners
are often forced to make arbitrary commitments regarding the order in which actions are to be carried
out. Such arbitrary orderings often fail to lead to a solution and have to be reversed. By ordering only
actions known to interact with one another (i.e., actions whose outcomes depend upon the order in which
" they are executed) the expectation was that nonlinear planners would avoid a lot of unnecessary work.

The problem in getting delayed-commitment planning to work is that it is often difficult to determine
if two actions actually are independent. In order to determine whether or not two actions are independent,
it is necessary to determine what the effects of those actions are. Unfortunately, in order to determine the

L, 49

wa 45 vevtowaly s

effects of an action a it is necessary to determine what is true prior to a being executed, and this in turn
requires that we know the effects of those actions that precede a. In general there is no way to determine
whether or not two actions are independent without actually considering all of the possible total orderings
involving those two actions. '

Planning depends upon the ability to predict the consequences of acting. Past planning systems capable
of reasoning about partial orders (i.e., nonlinear planners) have either employed weak (and often unsound)
methods for performing predictive inference or they have sought to delay prediction until the conditions
immediately preceding an action are known with certainty. Delaying predictive inference can serve to
avoid inconsistency, but it can also result in extensive backtracking in those very situaticns that nonlinear
planners were designed to handle efficiently.

It our contention that the initial success of Sacerdoti’s NOAH [10] program and the promise of NOAH's
style of least-commitment planning has caused researchers to ignore important issues in reasoning with
incomplete information. The idea of least-commitment planning is not the only reason for building planners
capable of reasoning about partially ordered events. Most events will not be under a planner’s control
and more often than not it will impossible to determine the order of all events with absolute certainty.
Planning sbyst.ems for realistic applications will have to reason about partially ordered events.

In this paper, we consider the problem of reasoning about the effects of partially ordered actions. A
theory for reasoning about the effects of actions (or, more generally, the consequences of events) is referred
to as a causal theory. We will describe a language for constructing causal theories that is capable of
representing indirect effects and the effects of actions that depend upon the situation in which they are
applied. We will describe a series of algorithms for reasoning about such causal theories. All of these
algorithms are polynomial-time, incremental, and insensitive to the order in which facts are added to or
deleted from the data base. We show that a particular algorithm is complete for causal theories in which
the events are totally ordered, but is potentially inconsistent in cases where the events are not totally
ordered. In [6] we show that the general problem of reasoning about conditional actions is NP-complete,
and, in this paper, we provide a partial decision procedure that, while not complete, is provably sound.
What this means for a planner constructing a plan is that the procedure is guaranteed not to misslead the
planner into committing to a plan that is provably impossible given what is currently known. If the decision
procedure answers yes, then the conditions are guaranteed to hold in every totally ordered extension of
the current partial order; if the decision procedure answers no, there is a chance that the conditions hold
in every total order, but to determine this with certainty might require an exponential amount of time or

space.

2 Temporal Data Base Management

In this section, we consider a particular type of inference system, referred to as a temporal data base
management system (or TDBMS) [4], that is used to keep track of what is known about the order, duration,
and time of occurrence of a set of events and their consequences. The user of a TDBMS is allowed to add
two sorts of information: that which is unconditionally believed and that which is believed just in case
certain conditions can be shown to hold. The former includes information concerning events that have

50

been observed or are assumed inevitable and information in the form of general rules that are believed to
govern the physics of a particular domain.

In specifying conditional beliefs, the user explicitly states what the conditions are, and the TDBMS
ensures that those beliefs (and their consequences) are present in the data base just in case the conditions
are met. This is achieved through the use of data dependencies 7). In a TDBMS, the primary forms of
data dependency (in addition to those common in static situations) are concerned with some fact being
true at a point in time or throughout an interval. In addition, there is a nonmonotonic form of temporal
data dependency concerned with it being consistent to believe that a fact is not true at a point in time or
during any part of an interval. These forms of temporal data dependency are handled in the TDBMS using
the mechanism of temporal reason maintenance [4]. Language constructs are supplied in the TDBMS that
allow an application program to query the data base in order to establish certain antecedent conditions
(including temporal conditions) and then, on the basis of these conditions, to assert consequent predictions.
These predictions remain valid just in case the antecedent conditions continue to hold.

Perhaps one of the most important and most overlooked characteristics of a temporal reasoning system
is the ability to handle incomplete information of the sort one invariably encounters in realistic applications.
For example, we seldom know the exact duration or time of occurrence of most events. Moreover, for those
durations and offsets we do know, they are seldom with respect to a global frame of reference such as a clock
or calendar. In the TDBMS, every point is a frame of reference, and it is possible to constrain the distance
between any two points simply by specifying bounds on the distance in time separating the two points.
By allowing bounds to be both numeric and symbolic, the same framework supports both qualitative (i.e.
ordering) and quantitative (distance) relationships.

Another important aspect of reasoning with incomplete information has to do with the default character
of temporal inference. In general, it is difficult to predict in advance how long a fact made true will persist.
It would be convenient to leave it up to the system to decide how long facts persist based upon the simple
default rule [9] that a fact made true continues to be so until something zerves to make it false. This
is exactly what the TDBMS does. The term persistence is used to refer to an interval corresponding to a
particular (type of) fact becoming true and remaining so for some length of time. A fact is determined to
be true throughout an interval I just in case there is a persistence that begins before the beginning of [
and it can’t be shown that the persistence ends before the end of I.

The TDBMS permits the specification of partial orders, but it imposes orderings in situations leading to
potential incoherency. If the TDBMS encounters two persistence intervals of contradictory types that are not
ordered with respect to one another, it prompts the calling program to resolve the possible contradiction by
either imposing an order or explicitly introducing a disjunction. By introducing a disjunction, the calling
program effectively splits the data base, producing two time lines. The answers returned by queries to the
TDBMS indicate the disjuncts that must be true for a query to succeed (i.e., the particular time line that
satisfies the query). There are also language constructs that allow a calling program to eliminate disjuncts
(and hence time lines) that have been ruled out. Unfortunately, as we will see in Section 5, eliminaling
explicit contradictions is not sufficient to ensure consistency in a system capable of making conditional
predictions from a set of partially ordered events [1]. Before we continue our discussion it will help to

_ introduce some notation.

51

Relations. Let Il be the set of points corresponding to the begin and end of events in a particular
temporal data base. We define a function DIST to denote the best known bounds on the distance in
time separating two points. Given xy, 3 € IT such that DIST(xy, x3) = (low, high), we have:

ex < xy & low>et - x1 precedes =3
o x = x5 & (low, high) =(0,0) ' - xy is coincident with x4
ox X x; & (% < x3) V (v = x3) ~ x1 precedes or is coincident with =3
o <p X3 & high>e ' - %3 possibly precedes »;
o =p %3 & high20 ~ xy possibly precedes or is céincident with x4

Tokens. We denote a set of time tokens T = {to,21,...ts} for referring to intervals of time during which
certain events occur or certain facts are known to become true and remain so for some period of
time. The latter correspond to what we have been calling persistences. For a given token t:

BEGIN(t), END(!) € I.

STATUS(t) € {IN,0UT}, determined by whether the token is warranted (IN) or not (OUT) by the
current premises and causal theory.

TYPE(t) = P where P is an atomic predicate calculus formula with no variables

DURATION(t) = DIST(BEGIN(t), END(t))

Types. As defined above, the type of an individual token is an atomic formula with no variables {e.g., (on
block14 tabled2)). In general, any atomic formula, including those containing variables, can be
used to specify a type. In describing the user interface, universally quantified variables are notated
?variable-name, the scope of the variable being the entire formula in which it is contained (e.g.,
(on ?x ?y)). In describing the behavior of the inference system, we will use variables of the form
tp to quantify over tokens of type P (e.g.,Vtp € T TYPE(tp) = P).

3 Reasoning about Causality

In the TDBMS, a causal theory is simply a collection of rules, called projection rules, that are used to
specify the behavior of processes. In the following rule, Py ...P,, @1...Qm, E, and R designate types,
and delay and duration designate constraints (e.g., (¢,00)). In:

{project {and Py ... P,

(M (not (and Q;...Qm)})) (m
E delay R duration)

Py...P,and Q,...Q,, are referred to as anlecedent conditions, E is the type of the triggering event,
and R refers to the type of the consequent prediction. The above projection rule states that, if an event

~ 'The symbol ¢ is meant to denote an infinitesimal: 3 number greater than 0 and smaller than any positive number.

52

R1: (project (and P;...P,
(M (not (and Q;...Qm))))
E R)

R2: {project (and P;...P,)
E R)

R3: (disable (and Q; ...Qm)
(ab R2))

R4: (disable (and R, ...R,)
(ab R3))

Figure 1: Hierarchically arranged projection and disabling rules

of type E occurs corresponding to the token tg and P;... P, are believed to be true at the outset? of tg
and it is consistent to believe that the conjunction of Q;...Qm is not true at the outset of tg, then, after
an interval of time following the end of tg determined by delay, R will become true and remain so for a
peried of time constrained by duration (if delay and duratson are not specified, they default to (0,0) and
(¢, 00), respectively). In the following, we will be considering a restricted form of causal theory, called a
type 1 theory, such that the delay always specifies a positive offset (causes always precede their effects).

We also allow the user to specify rules that serve to disable other rules [11]. Figure 1 shows a standard
projection rule R1 and a pair of projection and disabling rules R2 and R3 that replace R1. The rule R3 is
further conditioned by the rule R4. Assuming just the rules R2, R3, and R4, any application of R2 with
respect to a particular token ¢ of type E is said to be abnormal with regard to ¢ just in case Q;...Qm
hold at the outset of t and it is consistent to believe that R3 is not abnormal with regard to t. The
nonmonotonic behavior of type 1 causal theories is specified entirely in terms of disabling rules and the
default rule of persistence (see Section 2). In addition to their usefulness for handling various forms of
incomplete information, disabling rules make it possible to reason about the consequences of simultaneous
actions. The reader interested in a more detailed treatment of causal theories may refer to one of [4], [5],
or [11]. In parts of this paper, we will igncre disabling rules and speak of causal theories consisting solely
of simple projection rules of the form (project (and P,...P,) E R).

One of the most problematic aspects of designing a temporal inference system involves defining precisely
what it means for a fact to be true at a point or throughout an interval (i.e., the conditions under which a
query of the form TT(P,xy,x3) will succeed). As a first approximation, we offer the following definition,
which we will refer to as weak true throughout:

2An ulternative formulation described in [3] states that the antecedent conditions of a projection rule must be true tAroughout
fhe trigger event rather than true just at the outset. Both formulations are supported in the TDBMS, though we will only be
discussing the true-at-the-outset forinulation in this paper.

53

YVig € T
((sTaTUS(tg) = IN) A
(Btp,...tp, € T
(V1<iSn (STATUS(tp,) = IN) A
(sECIN(tp,) < BRGIN(tg)) A
(BEGIN(tg) <a END(tp,)))) A
~(3tq,...tq. € T
(Y 1 <5 < m (sTATUS(tq,) = IN) A
(BEGIN(tq,) < BEGIN(tg)) A
(pEaIN(tx) <ur END(tg,)))
=2 g €T
(sTATUS(tR) = IN) A
(DI1sT(END(t£), BEGIN(tR)) S delay) A
(DIST(BEGIN{tp),END(tz)) G duration)

Figure 2: Weak projection

Vf;f’ € n
Ip € T (2)
(sTATUS(tp) = IN) A
(BEGIR(tp) X =) A
(l’) < END(IP))
< TT(P, ‘l’hf,)

In order to specify the behavior of a temporal inference system such as the TDBMS, we also need to
define the criterion for inferring consequent »ffects from antecedent conditions via causal rules. Our first
such criterion will be referred to as weak projection (Figure 2) and is defined with respect to the general
form of a projection rule (1). Weak true throughout and weak projection correspond to the assumption
that “what you don’t know won’t hurt you.” Only those evints that can be shown to be ordered with
respect to a particular point will have any effect at that point. As we will see in Section 5, there are some
problems with this formulation.

4 Transactions on the Data Base: the User Interface

Every inference system provides some means for the user to specify rules (referred to collectively as a
causal theory) for inferring additional consequences of the data (referred to here as a set of dasic facts).
An application program interacts with an inference system by adding and removing items from the set of
basic facts, which in the TDBMS corresponds to a set of tokens and a set of constraints. The state of a
temporal data base is completely defined by a temporal constraint graph (TCG), consisting of the begin
and end points of tokens and constraints between them, and a causal dependency graph (CDG), consisting
of dependency structures corresponding to the application of causal rules in deriving new tokens. Each
transaction performed on the temporal data base results in changes to these two data structures. The
TDBMS is responsible for maintaining the temporal data base so that it captures exactly those consequences
that follow from the causal theory and the current set of basic facts.

54

Generally, the causal theory remains fixed for a particular application, and interaction with the TDBMS
consists of a series of transactions and queries. A transaction consists of either adding or removing
some token or constraint from the set of basic facts. A query consists of e predicate calculus formula
corresponding to @ question of the form *Could some fact P be true over e particular interval I7® An
affirmative answer returned by the TDBMS in response to such a query will include a set of assumptions
necessary for concluding that the fact is indeed true. Any assertions made on the basis of the answer
to such a query are made to depend upon these assumptions. There is also a mechanism that enables
the TDBMS to detect and, with the assistance of the calling program, resolve inconsistencies in the set of
constraints.

5 Completeness and Consistency

The primary source of ambiguity in the TDBMS arises from the fact that the set of constraints seldom
determines a total ordering of the tokens in T. Given that most inferences depend only upon what is
true during intervals defined by points corresponding to the begin and end of tokens in T, all that we are
really interested in is what facts are true in what intervals in the different total orderings of time points
consistent with the initial set of constraints. For each total ordering we can identify a unique set of tokens
that intuitively should be IN given a particular causal theory.

As fa; as we are concerned, an inference procedure is fully specified by a criterion for inferring consequent
effects from antecedent causc~ via causal rules (e.g. weak projection), a method for actually applying that
criterion (an update algorithm), and a criterion for determining if a fact is true throughout some interval
(e.g., weak true throughout). We will say that a particular inference procedure is complete for a class
of causal theories, if for any set of basic facts and causal theory in the class, the statements of the form
TT(P, x,,x2) warranted by the inference procedure are exactly those that are true in all total orders

consistent with the constraints in the TCG. Similarly, we will say that an inference procedure is sound

for a class of causal theories, if for any set of basic facts and causal theory in the class, each statement
TT(P, x|, x2) warranted by the inference procedure is true for any total order consistent with the set of
constraints. Given the preceding definitions, it is easy to show that the TDBMS is complete and sound for
type 1 causal theories, assuming that the tokens in T are totally ordered [6}.

In situations where the set of basic facts does not determine a total order, it’s easy to show that the
TDBMS can end up in a state with IN tokens that allow one to conclude statements of the form TT(P, xy, x2)
that are not true in any totally ordered extension. One thing we might do to improve the chances of the
TDBMS warranting only valid statements of the form TT(P, x, x3) is strengthen the criterion for belief in
a given token. We can determine a class of tokens that are said to be strongly protected, using the axioms
in Figure 3. In these axioms and the rest of the paper, we use Tg to denote the tokens in the set of basic
facts. If the set of constraints determines a total ordering, then the set of strongly protected tokens is
identical to the set of tokens that are IN, but generally the former is a subset of the latter. Using this
notion of strongly protected, we can define a stronger true throughout criterion that we will refer to as
strong true throughout:

55

VtET
STRONGLY-PROTECTED(t)

Vig €T
(STRONGLY-PROTECTED(ts) A
(B, .. tr, € T
(V1<i< n STRONGLY.- Pnorwrxo(m) A
(nmane(tp,) < nEaIN(tz)) A
(“Gn'(':) =a BND(tp,)) A
(Ve €
(rnrm(t-.p‘) = OUT) V
(sEaIN(t-p,) < BEGIN(tp,)) V
(zND(tg) < BRGIN(t-p,))))))
» Hg €T
STRONGLY-PROTECTED(tg) A
(D1sT(END(t5), BEGIN(tR)) C delay) A
(DIST(BEGIN(t2), END(tx)) S duration)

Figure 3: Strong protection defined for simple projection rules

Vig € T
((sTaTUS(t2) = IN) A
(3tp,...tp, €
(V1 <3< n (STATUS(tp,) = IN) A
[BEGIN(tp,) <ar BEGIN(t5)) A
(BEGIN(tg) <ar END(tp,)} A
(V‘-.p. €
~STRONGLY-PROTECTED(t-p,) V
(BEGIN(t~p,) < BEGIN(tp,)) V
(BEGIN(tg) <ar BEGIN(t.p,))))))

= p €T
(sSTATUS(tR) = IN) A
(DIST(END(tg), BEGIN(tR)) C delay) A
(D1sT(BEGIN(tR), END(tRr)) C duration)

Figure 4: Improbably weak projection defined for simple projection rules

Voyxa € 11
dp € T (3)
STRONGLY-PROTECTED(te) A
(BEGIN(tp) <X m) A
(3 =a END(tp))
<« TT(P,x,%3)

As it turns out, weak projection and strong true throughout still do not constitute a sound inference
procedure. We can show that, even when we restrict ourselves to strongly protected tokens, most interesting
decision problems are intractable. In fact, we can prove that the problem of determining if TT(P,x),x3) is

56

P

true for a type 1 causal theory, with or without disabling rules, is NP-complete [6). Although completeness is
computationally infeasible, it is possible to devise an inference procedure that is both sound and capable of
performing useful prediction. First, we provide e criterion for generating consequent predictions that takes
into account every consequence that might be true in any total order, called improbably weak projection
(Figure 4). Second, we provide a criterion for trus throughont thet zucciads only if the corresponding
formula will be true in all total dlers consistent with the current set of constraints. We define improbably
strong true tAroughout:

Yoy € NN
Itr e T 0
STRONGLY-PROTECTED(tp) A
(BEGIN(tp) < m) A
(Vtep € T
(sTATUS(t.p) = OUT) V
(BEGIN(t.p) < BEGIN(tp)) v
(*a < BEGIN(t-p)))
« TT(P, LI 1) *2)

There is a simple decision procedure for generating all consequences and computing the set of strongly
protected tokens. Let T; = Tg, and initially assume that no tokens are strongly protected. Let i = 1. To
compute the consequences of T;, set T4y = T;, compute the consequent tokens of each token in T; using
the criterion of improbably weak projection, and add any new tokens to T,;4;. Continue to compute new
consequent tokens in this manner incremcnting 1 as needed until T; = Ti41. Set T = T,. At this point,
perform a sweep forward in time (relative to the current partial order) determining for each token in T
whether or not it is strongly protected and the status, IN or OUT, of each its consequents. In [6], we prove
that this decision procedure is sound for a partially ordered set of tokens, and sound and complete for a
totally ordered set.

In the same paper, we give two incremental update algorithms with polynomial-time worst case be-
havior, one for weak projection and weak true throughout, and one for improbably weak projection and
improbably strong true throughout. The latter algorithm does not model the decision procedure given
above—there is a more complicated procedure with the same behavior that is more efficient by a constant
factor. We prove that these algorithms support exactly the conclusions licensed by their respective infer-
ence methods. Proving that the algorithms terminate is in one sense impossible. Using the TDBMS and a
type 1 causal theory with arithmetic functions (e.g., (project (contents 7?register ?n) (increment
?register) (contents ?register (+ 1 7n)))), we can easily simulate a Turing machine. There are a
number of methods for either restricting what the user can encode in a causal theory or limiting the scope
of the inferences computed by the TDBMS in such a way that we can guarantee that the update terminates.
By limiting the scope of the inferences computed by the TDBMS, we potentially sacrifice completeness, but
we have shown that to ensure completeness may require an exponential amount for time for other reasons.

6 Conclusions

This paper is concerned with computational approaches to reasoning about time and causality, particularly
in domains invc lving partial orders and incomplete information. We have described a class of causal theories

57

involving a carefully restricted use of nonmonotonic inference, capable of representing conditional effects
and the effects of simultaneous actions. We showed in [6] that the decision problem for nontrivial inference
systems involving conditional effects and partially ordered events is NP-complete. As an alternative to e
complete but potentially exponential-time inference procedure, we have described a decision procedure, for
which there is an incremental polynomial-time algorithm, that generates a useful subset of those inferences
that will be true in all total orders consistent with the initially specified partial order. The decision
procedure is provably sound and the resulting conclusions are guaranteed consistent if the underlying
causal theory is consistent. If the events turn out to be totally ordered, the procedure is complete as well

as sound.
o
References
1. Chapman, David, Planning for Conjunctive Goals, Technical Report AI-TR-802, MIT Al Laboratory, 1985,

10.

11,

. Charniak, Eugene and McDermott, Drew V., Introduction to Artificial Intelligence {Addison-Wesley Publishing

Co., 1985).

. Dean, Thomas, Temporal Imagery: An Approach to Reasoning about Time for Planning and Problem S‘oln’ng,

')g-chnical Report 433, Yale University Computer Science Department, 1985.

. Dean, Thomas, and McDermott, Drew V., Temporal Data Base Management, to appear in Artificsal Intells-

gence.

. Dean, Thomas, An Approach to Reasoning About the Effects of Actions for Automated Planning Systems, to

appear in the 1987 volume of the Annals of Operations Research entitled “Approaches to Intelligent Decision
Support”.

. Dean, Thomas, and Boddy, Mark, Incremental Causal Reasoning, Technical Report CS-87-1, Brown University

Department of Computer Science, 1987,

. Doyle, Jon, A truth maintenance system, Artificial Intelligence 12 (1979) 231-272.

. Fikes, Richard and Nilsson, Nils J., STRIPS: A new approach to the applicaticn of theorem proving to problem

solving, Artificial Intelligence 2 (1971) 189-208.

. Reiter, Raymond, A Logic for Default Reasoning, Artificial Intelligence 13 (1980).

Sacerdoti, Earl, A Structure for Plans and Behavior (American Elsevier Publishing Company, Inc., 1977).

Shoham, Yoav, Chronological Ignorance: Time, Knowledge, Nonmonotonicity and Causation, in Georgefl,
Michael P. and Lansky, Amy L. (Eds.), The 1986 Workshop on Reasoning about Actions and Plans, (Moryan-
Kaufman 1987).

58

